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Spatial heterogeneity in secondary phase particle distri-

butions can strongly influence failure processes. In

developing models that capture the stochastic nature of

failure, the fact that real particle distributions rarely

exhibit the ‘‘true’’ randomness of an equilibrium

ensemble (as may be generated computationally using a

Metropolis algorithm [1]) presents a challenge. In mod-

eling investigations, some form of ‘‘random’’ state has

typically been assumed. Representative volume element

models are often employed in which particles are added

via Random Sequential Addition (RSA) [2–5].

Microstructures that deviate from equilibrium have been

modeled by distributing particles within randomly

dispersed spherical clusters [6], or by adopting a cellular

automata approach [7–9]; in each case, the model

microstructures were arbitrarily constructed.

Enhancing the fidelity of multiphase material models

requires the construction of models that recreate the true

spatial statistics of real materials. Disordered heterogeneous

materials may be reconstructed using an ‘‘energy minimi-

zation’’ technique based on correlations such as the radial

distribution function [10–14]. An initial microstructure is

allowed to evolve towards exhibiting the desired correlation

function via a Metropolis approach [15]; the probability of a

particle move being accepted is based on an ‘‘energy’’

representing the difference between the current and target

correlation functions. The two-particle radial distribution

function is, however, not well suited to reconstructing

microstructures exhibiting significant particle clustering

[9], necessitating identification of a correlation that char-

acterizes the extent and severity of clustering.

The mean center-to-center distance to the 1st nearest

neighbor particle ( LNh i) is well established as a tool for

qualitatively characterizing deviation from a ‘‘random’’

state [16–19]. Dirichlet tessellation of two-dimensional

particle distributions can extend the characterization to

include the first shell of ‘‘near’’ neighbor particles, through

measures such as the mean ‘‘near’’ neighbor distance, the

coefficient of variation in the near neighbor distance, and

the cell area fraction [20, 21].

Clustering may, however, extend much further than the

first shell of near neighbors. Comparing the mean center-

to-center distance to the Nth-nearest neighbor particle in an

actual microstructure ( LNh i) with the value expected for an

equilibrium particle distribution ( RNh i), an approach orig-

inally proposed to quantify deviation from a Poisson point

process in plant populations [22, 23], provides a means of

qualitatively and quantitatively characterizing deviation

from equilibrium. The ‘‘deviation ratio’’ DN may be

defined as

DN¼
LNh i
RNh i ð1Þ

For generality, LNh i and RNh i must be normalized by the

mean particle diameter. For distributions in which clus-

tering is more severe than expected at equilibrium,

DN < 1; DN > 1 or oscillations in DN would indicate the

presence of local order in the distribution. With increasing

N, the effects of short range clustering or ordering should

diminish, and the ratio should tend towards one.

In characterizing particle distributions, the source of the

RNh i data must be selected in accordance with the nature of

the data available. In many instances, the particle distribution
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data will be compiled from two-dimensional micrographs.

For a two-dimensional point process, the mean distance to

the Nth-nearest neighbor point ( PNh i) is given by [22]

PNh i ¼
N : 2Nð Þ!

2nN !ð Þ2k
1=2

ð2Þ

where k is the intensity (number of points per unit area).

Testing of the ‘‘randomness’’ of particle distributions has

often been based on values of P1 calculated using Eq. 2

[16–19].

Spatial distributions of impenetrable particles, however,

constitute ‘‘inhibited’’ point processes. While formulae

have been derived that place bounds on R1h i for equilib-

rium ensembles of monodisperse particles in two- and

three-dimensions [1], exact analytical expressions are not

available for higher order neighbors. Computer simulations

have been undertaken to secure RNh i for N up to 20 for

equilibrium ensembles of monodisperse particles in two

and three dimensions, and equations have been established

to predict RNh i for N £ 3 (in 2D) and N £ 6 (in 3D)

[24, 25]. The three dimensional results may be used to

compute DN if a three-dimensional characterization of the

particle distribution is available.

The particle distribution in a micrograph, however,

results from taking a slice through a three-dimensional

particle array. For a three-dimensional array of monodis-

perse spheres, the slice contains a polydisperse set of disks

having a mean disk diameter of pD/4 (D = sphere diame-

ter). Given that the disk arrangement is governed by three-

dimensional exclusion effects, there is no reason to expect

that the mean Nth-nearest neighbor distances would be

equivalent to those obtained from a two-dimensional

equilibrium ensemble of disks. This is confirmed by Fig. 1,

which compares the distances to the Nth-nearest neighbor

for a volume fraction of 0.20 for (a) a three-dimensional

equilibrium ensemble of monodisperse spheres of unit

diameter [26], (b) a slice through an equivalent ensemble,

and (c) a two-dimensional array of monodisperse disks of

diameter p/4 (matching the mean diameter of the disks on

the slice).

Since the current investigation considers spatial distri-

bution data drawn from micrographs, computation of the

deviation ratio must be based on the RNh i obtained for

slices through three-dimensional equilibrium ensembles of

monodisperse spheres. To fully evaluate the extent of

clustering, and understand the manner in which the RNh i
of an inhibited point process tend towards the PNh i of the

point process with increasing N, for this investigation the

RNh i needed to be computed for N £ 200 for sphere vol-

ume fractions of 0.10 and 0.20.

To accomplish this, initial particle arrays were created

using RSA to place 10000 spheres of unit diameter within a

right parallelepiped sized to both achieve the desired vol-

ume fraction exactly and ensure that slices aligned with the

XY-plane intersected enough particles to yield valid statis-

tics for N £ 200. The particles were then moved randomly

using a Metropolis algorithm, the mean move distance

being adjusted to achieve a 50% probability of acceptance.

Particles leaving the volume reappeared periodically at the

opposite face of the volume. When assessing the permis-

sibility of a move, edge effects were accounted for by

constructing a ‘‘periodic torus’’ of periodic image volumes

surrounding the base volume.

For each volume fraction, the first 400 realizations were

ignored to allow equilibrium to be achieved; every 20th

realization thereafter was stored for sampling until a total of

100 realizations had been stored. Five slices sampling the

full depth were made through each stored realization. Edge

effects were accounted for when computing Nth-nearest

neighbor distances by creating a two dimensional periodic

torus surrounding the base realization. The normalized

Nth-nearest neighbor distances (RN divided by the particle

diameter) for every sliced particle were then stored for

statistical computations.

The ‘‘inhibition ratio’’ qN may be defined as the ratio of

the mean center-center distance to the Nth-nearest neighbor

for a slice to the mean distance to the Nth-nearest neighbor

for a point process of equivalent intensity;

qN ¼
RNh i
PNh i

ð3Þ

Fig. 1 Plot of the distances to the Nth-nearest neighbor for a volume

fraction of 0.20 for (a) a three-dimensional equilibrium ensemble of

monodisperse spheres of unit diameter [26], (b) a slice through an

equivalent ensemble, and (c) a two-dimensional equilibrium ensemble

of monodisperse disks of diameter p/4 (matching the mean diameter

of the disks on the slice)
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The inhibition ratio is plotted as a function of N for both

volume fractions in Fig. 2. The inhibition effect is signifi-

cant (qN is greater than 1.005) for N £ 28 (for 0.10 volume

fraction) and N £ 60 (0.20); thereafter qN @ 1. Some

oscillation in qN due to short-range packing has been

observed at high area/volume fractions for monodisperse

disks and spheres [24–26]; for the volume fractions under

consideration, any oscillation in the slice data was negli-

gible.

To illustrate the performance of the deviation ratio

approach, the results obtained for two idealized model

systems created by RSA are presented in Fig. 3. For both

model systems, 100 realizations were created in which

10000 monodisperse spheres were distributed within cubic

volumes sized to achieve a volume fraction of 0.10. Ten

slices were then passed through each realization, and the

deviation ratio was computed by comparing the mean

Nth-nearest neighbor distances for the slices through the

model systems with the distances expected for slices

through equilibrium ensembles of monodisperse spheres of

the same volume fraction.

For the first system, sphere centers were not permitted to

approach closer than 1.25 times the sphere diameter, cre-

ating an artificially large exclusion zone. For this system

the deviation ratio was greater than unity for all values of

N. There was significant deviation from the equilibrium

statistics for N < 4, indicating that this exclusion zone

affected nearest neighbor distances only over a relatively

limited range. For the second model system, spheres were

placed within spherical clusters, with each cluster con-

taining 20 particles. 500 ‘‘cluster spheres’’ were placed

within the volume by RSA, and then 20 particles were

placed within each cluster sphere by RSA. The volume

fraction within each individual cluster was approximately

0.20. The resulting deviation ratios were less than unity for

all N, with the ratio providing evidence of significant

clustering for values of N < 12.

Given that each spherical cluster originally contained 20

particles, this is consistent with the fact that a slice only

samples some portion of the particles within each cluster,

and highlights that further work needs to be done to

characterize the relationship between the ‘‘slice’’ data

drawn from micrographs and the characteristics of three-

dimensional microstructures. Interestingly, the high local

volume fraction within the clusters creates an initial

oscillation in the deviation ratio, similar to the shell

packing effect observed for three dimensional equilibrium

ensembles [26].

The illustrate the behavior of the deviation ratio for a

real material system, the distribution of silicon carbide

particles in the melt cast Duralcan F3S.20S (aluminium

359 – 0.20 volume fraction SiC) particulate reinforced

metal matrix composite (PRMMC) depicted in Fig. 4 was

analyzed. The SiC particles are the dark particles in Fig. 4;

the light particles are silicon particles formed during the

solidification of the silicon-rich casting alloy matrix. The

SiC particle distribution exhibits significant clustering due

to the interdendritic segregation that arises during solidi-

fication.

The LNh i for the SiC particles in the Duralcan F3S.20S

PRMMC were computed by analysis of the micrograph in

Fig. 4 using NIH Image (version 1.61). The image depicts

605 sliced SiC particles, with the LNh i being obtained by

Fig. 2 Plot of the inhibition ratio for slices through three-dimen-

sional equilibrium ensembles of monodisperse spheres at volume

fractions of 0.1 and 0.2

Fig. 3 Deviation ratios plotted as a function of N for two idealized

0.10 volume fraction model systems created by RSA. For the

spherical cluster system, 20 particles were placed by RSA within

each of 500 spheres that were themselves placed by RSA. For the

‘‘1.25 exclusion’’ system sphere centers were prohibited from

approaching closer than 1.25 times the sphere diameter
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averaging the results obtained for all SiC particles. Edge

effects were again accounted for by creating a periodic

torus surrounding the original image. The mean particle

diameter was calculated using the Schwarz–Saltykov

diameter method [27], yielding an estimated diameter of

12.2 lm.

The deviation ratio values are plotted as a function of N

in figure 5. From qualitative inspection of Fig. 5, the

clustering appears to extend (in the slice) over the range of

20–25 particles. The variation of DN can be described by an

exponential function of the form

DN ¼ 1� C1 exp �C2N 1=3
� �

ð4Þ

Where C1 and C2 are constants determined by curve fitting.

The power N1/3 was adopted for consistency with the

number of particles within a sphere, and was found to give

a superior fit than N1.

An alternate numerical indicator of clustering severity

may be defined by adapting a measure of translational order

proposed by Torquato et al. [28]. As originally defined,

relative ordering was quantified by comparing occupation

numbers for a spherical shell of varying diameter with the

values expected for ideal and FCC arrangements. In con-

trast, to quantify the deviation from equilibrium one may

define a clustering parameter v;

v ¼
X200

n¼1

1� DNð Þ ð5Þ

Both measures are sensitive to the estimate of the mean

particle diameter, which can be highly uncertain for real

materials. The function in Eq. 4 is the more robust

measure, as its form will be unaffected by the assumed

particle diameter; it will simply translate vertically if the

assumed diameter is altered, and a valid qualitative

estimate of the extent of clustering may still be obtained.

In the form proposed in Eq. 5, the v parameter is

obviously sensitive to such a translation. To render both

measures more robust in the face of uncertainty in the

particle diameter, the constant ‘‘1’’ in both equation

may be replaced by the value of D200, representing the

far-field value of DN. The measures may then be

rewritten:

DN ¼ D200 � C1 exp �C2N 1=3
� �

ð6Þ

v ¼
X200

n¼1

D200 � DNð Þ ð7Þ

For the Duralcan F3S.20S PR MMC, least squares fitting

yields C1 and C2 equal to 0.681 and 1.173 respectively (the

resulting curve is plotted in Fig. 5); the value of the v
parameter is 2.40.

In its present form, the proposed approach appears to

provide a solid foundation for characterizing spatial dis-

tributions of particles based on micrograph data. Equations

(4) and (6) provide a correlation that may be used for the

reconstruction of realistic particle distributions. The value

of the v parameter may be used in conjunction with mea-

sures of the range of clustering (such as the range over

which the deviation ratio is significantly different from

unity) to provide an indication of the relative severity of

clustering.

Fig. 4 Back-scattered electron micrograph of a Duralcan F3S.20S

PRMMC exhibiting interdendritic segregation. The dark particles are

the Silicon Carbide particles considered in this investigation; the light

particles are silicon particles formed within the Al 356 matrix. The

scale bar is 100 lm long

Fig. 5 Deviation ratio plotted as a function of N for the Duralcan

F3S.20S PRMMC. A curve fitted to the data using Eq. 6 is also

shown, with constants C1 = 0.681 and C2 = 1.173

J Mater Sci (2006) 41:5718–5722 5721

123



This initial investigation has collected data for slices

through equilibrium ensembles of monodisperse spheres of

a single volume fraction. It must be remembered, however,

that real particle distributions, such as that in the Duralcan

F3S.20S PR MMC, are generally comprised of polydisperse

non-spherical particles. It has been noted that polydispersity

in the particle distribution can increase the mean surface–

surface distance for the 1st-nearest neighbor [29]; further

investigation is presently underway to determine polydis-

persity’s effect on the inhibition ratio for higher order

nearest neighbors, and thus its likely effect on the value of

the deviation ratio computed for the Duralcan F3S.20S PR

MMC. For non-spherical particles, it will also be necessary

to combine correlations based on the deviation ratio with

correlations describing the local orientation distribution to

generate completely realistic reconstructions. At this time,

the fundamental spatial statistical data for equilibrium

ensembles of polydisperse and non-spherical particles that

are needed to compute deviation ratios and other necessary

correlations for real materials have not been reported. Col-

lection of this data is obviously a priority in the continuing

development of techniques for characterizing heterogeneity

in real materials.
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